Una nueva receta cósmica

 

Continuando con las ideas del post “Por qué Planck aún no termina de sorprender…”,  hagamos un breve resumen de la nueva apariencia de nuestro Universo que la Misión Planck nos proporcionó hace ya más de un año:

  1. El Universo tiene una edad de 13.82 mil millones de años.
  2. El Universo se está expandiendo un poco más lentamente que lo que se esperaba.
  3. El Universo contiene 4.9 % de materia ordinaria, 26.8 % de materia oscura y 68.3 % de energía oscura.
  4. El Universo es asimétrico: sólo un poco, sólo un indicio, pero que tiene profundas implicaciones.

¿Qué significa todo esto?  Demos un vistazo a estos resultados.

 

Tan viejito como lleno de misterio. 

 

La edad del Universo es mayor de lo que esperábamos. Hace algunos unos años, la sonda de Anisotropía de Microondas Wilkinson (WMAP, por sus siglas en inglés) miró el Universo tanto como el satélite Planck lo ha hecho recientemente, y por el momento tiene la mejor determinación de la edad cósmica: 13.73 ± 0.12 mil millones de años.

La misión Planck descubrió que el Universo es casi 100 millones de años más antiguo: 13.82 mil millones de años, lo cual es consistente con la estimación reportada por la sonda WMAP, pero las mediciones del satélite Planck se consideran más refinadas. Esta nueva cantidad se convertirá en el nuevo punto de referencia para los astrónomos.

 

 El Universo se expande un poco más lento de lo que esperábamos.

 

El Universo está en expansión, y ha estado comportándose así desde el momento en que nació. Podemos medir la velocidad de la expansión de diversas maneras, por ejemplo, mirando distantes explosiones de estrellas. Podemos medir la rapidez con que se están alejando de nosotros junto con la expansión del espacio al ver lo mucho que su luz está desplazada hacia el rojo. Cuanto más lejos vaya, más rápido será la expansión del Universo, y lo que el satélite Planck encontró es que el Universo está creciendo a una velocidad de 67.1 kilómetros por segundo por megaparsec. Un megaparsec es una unidad de distancia equivalente a 3.26 millones de años luz (lo cual es conveniente para los astrónomos). Eso significa que si nos fijamos en una galaxia un megaparsec lejos (distancia equivalente a unos 3,26 millones de años luz), ésta parece estar alejándose de nosotros a 67.3 kilómetros/segundo. Una galaxia a dos megaparsecs de distancia retrocedería a dos veces esa velocidad, 134.6 kilómetros/segundo, y así sucesivamente. Esto se conoce como el Parámetro de Hubble. Varios métodos han sido utilizados para medirlo durante el siglo pasado, y algunos de los mejores mostraron un resultado de 74.2 kilómetros/segundo/megaparsec. La medición del satélite Planck es aún más pequeña, por lo que el Universo parece estar expandiéndose un poco más lento de lo que pensábamos, y su edad es un poco mayor de la que se había considerado.

Parte de la razón por la cual la cantidad que da el satélite Planck es menor es porque se está mirando la luz proveniente del origen del Universo, y que viene de muy lejos, por lo que hay que extrapolar hacia el presente para ver lo rápido que está creciendo. Otras mediciones utilizan la luz de objetos que están más cerca, y los científicos extrapolan hacia atrás en el tiempo.

Puesto que los dos números son distintos, esto puede significar que el Parámetro de Hubble cambia con el tiempo. Este parámetro es muy difícil de medir, y seguro que los astrónomos estarán discutiendo sobre él durante los siguientes años. Más información sobre estos detalles los pueden encontrar en el artículo titulado “A través de la oscuridad del Universo”.

 

Un pastel con diferentes proporciones

 

Puede que los nuevos números que el satélite Planck ha revelado le den un nuevo sabor a la estructura del Universo. La cantidad de las fluctuaciones en la luz de los inicios del Universo, así como la forma en que se distribuyen se pueden utilizar para averiguar de lo que está constituido. La nueva receta es:

  1. 4.9  % de materia ordinaria,
  2. 26.8 % de materia oscura,
  3. y 68.3 % de energía oscura.

 

Figura 1. Relación porcentual de los componentes materiales del Universo. En misiones anteriores a Planck (Izquierda). Actual porcentaje material dado por la misión Planck (Derecha). [Modificado de la fuente original].

 

 

La materia ordinaria es lo que llamamos protones, neutrones, electrones, básicamente todo lo que ves cuando miras a tu alrededor. Estrellas, automóviles, libros. Todo esto está hechos de materia ordinaria. Tú también.

La materia oscura es una sustancia invisible, pero tenemos evidencia que sugiere su existencia. Vemos sus efectos a través de su gravedad, que altera profundamente cómo las galaxias rotan y cómo se comportan los cúmulos de galaxias. Y haciendo las cuentas, hay 21.9 % más de ésta materia de lo que hay materia ordinaria. ¡Nuestro Universo realmente prefiere su lado oscuro!

Los indicios de existencia de la energía oscura empezaron en 1998, cuando se descubrió que la expansión del Universo se está acelerando. Esta energía es muy misteriosa, pero actúa como una presión, aumentando la velocidad de expansión del Universo. Lo poco que sabemos de esta exótica materia es que es un componente con grandes proporciones en la receta cósmica.

Las mejores estimaciones para estos números antes de la misión Planck fueron un poco diferentes: 4.6, 24 y 71.4 %, respectivamente. ¿Qué es lo que aprendemos con la misión Planck? Que hay menos energía oscura de lo que pensábamos, por lo que el Universo está formado por un poco menos de esas cosas raras, si eso hace sentir mejor al lector. ¡Pero todavía hay mucho de eso! Lo que alegra a gran parte de la comunidad de cosmólogos, ya que estas nuevas cifras apoyan el paradigma inflacionario, la hipótesis según la cual el universo habría experimentado una expansión de proporciones descomunales durante la primera fracción de segundo tras la gran explosión.

La buena noticia es que teniendo cantidades refinadas de todos estos medios, los astrónomos pueden ajustar aún más sus modelos, llevándonos así a un más claro entendimiento de los fenómenos astronómicos. Diferentes modelos de cómo el Universo se comporta predicen diferentes proporciones de estos ingredientes, así que conseguir que ellos estén centrados con más detalle nos permite ver qué modelos funcionan mejor. ¡Estamos aprendiendo!

 

 

Porque en la asimetría radica la belleza

 

Cuando decimos que el Universo presenta una asimetría en las temperaturas en los hemisferios opuestos del cielo, nos referimos a la falta de su distribución de manera homogénea. La misión Planck reporta nuevos datos, contrarios a las predicciones del modelo estándar cosmológico de que el Universo debería ser semejante en cualquier dirección que mirásemos. De todos los resultados mencionados hasta ahora, éste puede ser el más provocador. Esperamos que el Universo sea uniforme a gran escala. Esas fluctuaciones iniciales deben ser al azar, así que cuando usted mire alrededor de esa luz antigua, el patrón debe ser bastante aleatorio. ¡Y lo es! La distribución de las fluctuaciones es bastante aleatoria. A simple vista estas fluctuaciones pueden comportarse de esa manera, pero nuestros cerebros son desastrosos al pensar en la aleatoriedad real, por lo que tenemos que imponer orden en él. Tenemos que usar computadoras, matemáticas y estadísticas para medir la distribución y probar la aleatoriedad real, y una vez hecho esto el Universo pasa la prueba.

Un modelo cosmológico estándar simple del Universo dice que esto no debería suceder. ¡El Universo es asimétrico a gran escala! ¿Qué puede significar esto? En este momento, no sabemos, y hay muchas más ideas de por qué esto podría pasar que datos con los que podemos probarlas. Esto podría significar que la energía oscura cambia con el tiempo, por ejemplo. Otra idea, y una que es muy emocionante, es que estamos viendo un patrón impreso en el Universo desde antes del Big Bang. Lo que suena loco, pero no es completamente ilógico. Puede que esté sucediendo algo en escalas que no podemos ver.

 

 

Acerca del autor:

Celia Escamilla Rivera es Doctora Europeus por la Universidad del País Vasco y la Universidad de Oxford. Actualmente investigadora visitante en la Universidad de Nottingham, Reino Unido. Su investigación se centra en la interacción entre la cosmología teórica y observacional.