agujeros negros

Hawking y el sensacionalismo mediático bajo la lupa

24022014 El más reciente artículo de Stephen Hawking ha generado mucha controversia. Es por ello que resulta urgente distinguir las palabras del físico de entre las extrapolaciones ridículas de medios y políticos, así como reflexionar de manera breve qué tan importante es su argumento en el contexto actual de la física.

A mediados de enero de este año, una sola cabecera resaltó por sobre las demás noticias en distintos medios (sí, también en Historias Cienciacionales): "No existen los agujeros negros". La frase se atribuyó a Stephen Hawking. Cosa rara, porque el científico no escribió eso en su artículo. Lo que hizo fue alegar, de manera descriptiva (algo inusual en un artículo de física), que no existen los horizontes de eventos pero sí los horizontes aparentes.

La distinción entre horizontes aparentes y horizontes de eventos fue hecha por Hawking en los setentas; no es una idea nueva. Para entender la diferencia entre ambos, es útil imaginar que un agujero negro se traga una estrella. El horizonte de eventos es una superficie imaginaria que funge como frontera entre el interior y el exterior del agujero negro. Si algo cruzara los límites del horizonte, aun si fuera la luz misma, no podría escapar ya que la gravedad ha distorsionado tanto al espacio que los objetos sólo pueden moverse "hacia adentro". Es el punto de no retorno, donde la única esperanza de las desafortunadas partículas que traspasan la frontera sería viajar hacia atrás en el tiempo.

Siguiendo con nuestro ejercicio de imaginación, el agujero negro crecería mientras devora la estrella. Lo complicado ahora es decir si el horizonte de eventos creció junto con la estrella. En realidad, lo que creíamos que era EL horizonte de eventos sólo aparentaba serlo. De ahí, el nombre de horizonte aparente.

Los horizontes aparentes tienen muchas de las propiedades de los horizontes de eventos: ninguna partícula puede escapar fuera de ellos, el tiempo y el espacio invierten su papel, y dentro de estos horizontes existe una singularidad física cuyo desgarre gravitacional destruye hasta a los átomos. La cosa es que las vastas evidencias empíricas que apuntan muy fuertemente a la existencia de agujeros negros en realidad siempre han sido evidencia de la existencia de horizontes aparentes.

En la publicación más reciente de Hawking, la distinción entre horizontes de eventos y aparentes es relevante sólo para conservar información y para ciertas propiedades de la mecánica cuántica. Esto se relaciona con una paradoja que emana de los argumentos originales del físico: si las extensiones cuánticas a los agujeros negros que presentó en los años setentas fuesen válidas, entonces la información que entra a un agujero negro se pierde, algo que la mecánica cuántica estándar prohíbe.

Imagine usted ahora que manda a su escritor favorito de Historias Cienciacionales a un agujero negro. De acuerdo con la teoría que hizo famoso a Albert Einstein, la relatividad general, no sabríamos nada más de él/ella una vez que cruzara el horizonte de eventos, y su información (contenida en sus átomos, los enlaces químicos que se forman en sus células, y una totalidad de cosas importantes para que su escritor favorito siga con vida) se perdería para siempre. Hawking modifica esto y dice que el agujero negro emite luz de regreso –de manera casi imperceptible–, como la que emitiría un horno al calcinar a Víctor, Rodrigo, Sofía o Emiliano (o a todos ellos, como guste). La diferencia con el horno es que el tipo de luz que podemos observar depende de lo que quemamos; en un agujero negro, la luz que éste regresaría no depende de lo que haya entrado en él. La distinción entre la propuesta de Stephen Hawking y lo que dice la física clásica es que la segunda no toma en cuenta a la mecánica cuántica, y Hawking sí. Es importante aclarar que todo esto es, hasta la fecha, meramente especulativo: no existe ninguna evidencia experimental que lo sustente, y es probable que por esta razón el científico británico nunca haya ganado un Nobel.

Hawking promovió sus conclusiones durante 30 años hasta 2004, cuando se retractó de ellas a causa de algunas ideas –también especulativas– de la teoría de cuerdas, un modelo de la física teórica. No pasó mucho sino hasta hace dos años, cuando se publicó un artículo donde se afirmaba que, si se asumían algunos supuestos de la teoría de cuerdas, se generaba una “barrera de fuego” o firewall hecha de partículas de luz súper-energéticas dentro del horizonte de eventos, destruyendo así la información. Una vez más, la polémica resurgió y, de las cenizas de una discusión que se había dado por terminada, se avivaron las llamas de la duda. Hawking se opone a esta nueva idea y, en su artículo reciente, presenta razones por las cuales, según él, no puede formarse un firewall. Estos argumentos implicarían, de paso, que no existen los horizontes de eventos. Sólo los horizontes aparentes.

Aquí es donde difiero de la ola sensacionalista que invadió a los medios el mes pasado. Los argumentos actuales de Hawking son altamente especulativos. Suponen que se extienden principios de la mecánica cuántica a otras escalas, como la de la gravedad cuántica, sobre las cuales no existe ningún consenso por la ausencia de experimentos. Pero estos debates sobre la existencia de firewalls sólo tienen sentido en el contexto particular de una de las más de 20 (quizá hasta 100) diferentes teorías sobre la gravedad cuántica, todas ellas con principios e ideas diferentes. Desafortunadamente, el debate que ahora enfrentamos es más del tipo religioso, en la que una teoría se promueve a través de los principios que predica y su número de seguidores, y no a través de evidencia empírica.

Al respecto, es válido preguntarse cuál es el valor científico del debate que Hawking genera si la mayoría de sus argumentos carecen de un sustento experimental. No es que sea malo especular. Al contrario, es una labor importante del físico teórico. Pero cuando la cantidad de especulaciones excede lo verificado, las ideas comienzan a perder su carácter científico.

El mismo Hawking es también un ejemplo de esto. En 2003, redactó un artículo donde sugería que dentro de los agujeros negros se formaban universos bebés, algo que se puede ver al final de un gran documental de la BBC. Un par de años después se retractó, y hoy su idea ha pasado al olvido.

¿Será ése el mismo destino de su reciente artículo? Sólo el tiempo y el espacio lo dirán.

_________________

Esta es la primera colaboración de Daniel Sheinbaum Frank con Historias Cienciacionales. Daniel es matemático por la UNAM y actualmente cursa su posgrado en física en la Universidad de British Columbia, en Vancouver, donde se divierte estudiando simulaciones numéricas en el marco de la relatividad general. También le gustan los cuentos de Cortázar y la serie Breaking Bad.

_________________

Bibliografía

*Wikipedia (en inglés) tiene un extenso artículo sobre la relatividad general, agujeros negros y horizontes aparentes: http://en.wikipedia.org/wiki/Black_hole#Observational_evidence

*Acá está el artículo más reciente de Hawking, que ha levantado tantas pasiones: http://arxiv.org/pdf/1401.5761.pdf

*Y aquí un análisis sobre los firewalls y los agujeros negros: http://arxiv.org/pdf/1207.3123.pdf

*Una breve lista de la teorías de gravedad cuántica se encuentra en este enlace: http://en.wikipedia.org/wiki/Quantum_gravity#Other_approaches

*Blog Historias Cienciacionales 

Un agujero negro supermasivo y una estrella pulsante supermagnética.

El centro de la galaxia bulle de interés: un agujero negro supermasivo y una estrella pulsante supermagnética ¿Quién no ha querido ver lo que pasa cuando algo entra a un agujero negro? Suerte que en el mismísimo centro de nuestra galaxia hay un agujero negro llamado SgrA* que, además de ser tan grande para que los astrónomos lo hayan catalogado como “supermasivo” (la friolera de 4 millones de veces la masa de nuestro sol), está rodeado de una nube de gas y polvo. Cuando esa nube comience a caer dentro del agujero negro, lo cual se calcula que pasara en septiembre de este año, los astrónomos esperan un auténtico espectáculo de “fuegos artificiales” galácticos. Es por eso que varios telescopios, incluyendo el telescopio Swift de la NASA, tienen el ojo atento al centro de la Vía Láctea.

Este mismo telescopio descubrió en abril de este año un destello proveniente del centro de la galaxia. ¿Se había adelantado el descomunal agujero negro a engullir su cena? Muchos científicos sospecharon que había algo más en juego. Fiona Harrison, la encargada del telescopio espectroscópico de gama nuclear, o NuSTAR, de la NASA, detectó en ese mismo mes que el destello de rayos X parpadeaba con un lapso de 3.76 segundos. Otros telescopios pronto confirmaron la naturaleza del objeto: se trataba de una rara forma de estrella de neutrones llamada magnetar.

Los magnetares, de los cuales sólo se conocen 26 en el universo, son un tipo de púlsares, estrellas de neutrones que emiten radiación electromagnética a intervalos tan regulares que desafian la precisión de los mejores relojes atómicos. El rayo de radiación de estos objetos sale disparado desde su eje magnético, que es diferente al de su eje de rotación. Son algo así como un faro estelar. Mientras que la mayoría de los púlsares se alimenta de su energía rotatoria, los magnetares la obtienen de sus descomunales campos magnéticos, 100 millones de veces más fuertes que cualquier imán producido por el hombre.

La nube de gas y polvo que SgrA* está a punto de tragar, sumada a la presencia del magnetar que lo orbita a sólo 0.38 años luz de distancia, convierte al centro de nuestra galaxia en un punto de interés astronómico como no ha habido en años.“Creo que nunca ha habido un campo tan grande de telescopios viendo el centro de la galaxia”, dice Stefan Gillessen, astrónomo del Instituto Max Planck para Física Extraterrestre, en Alemania.

Como bonus extra, el magnetar podría corroborar las predicciones relativistas de Einstein. De acuerdo con la teoría del físico, la regularidad con la que el magnetar emite su radiación debería acelerarse y alentarse conforme varíe su posición respecto al campo gravitatorio masivo de SgrA*. Así, por esta y otras razones, los ojos de los astrónomos se mantendrán en esta zona.

Nota fuente en Nature | Nota en Science Daily | Todos los magnetares conocidos