cero

Todo es cuestión de compartir

Le compartimos la cuarta entrega de la serie acerca de los números. Una vez más, Juan de Pedazos de Carbono nos explica lo que ocurre cuando intentas hacer divisiones entre cero (no, no explota el mundo) y sobre el concepto de infinito (¡lo cual es infinítamente interesante!). --

En el Juego del Ultimátum, dos personas tratan de decidir como repartir entre ellos cierta cantidad de dinero. El primer participante decide la fracción de dinero que le toca a cada uno de los dos, y el segundo de ellos puede decidir aceptar la oferta—de modo que cada quien recibe lo acordado—o rechazarla—en cuyo caso el dinero se pierde y ninguno recibe nada. Y no hay más oportunidades o intentos. Es un Ultimátum. Esas son las reglas del juego.

Supongamos que, por ejemplo, se tienen que repartir $1,000 entre las dos personas. La primera de ellas podría sugerir quedarse con $600 y dejar $400 a la segunda, podría sugerir repartir el dinero en cantidades iguales, o podría incluso sugerir quedarse con $999 y dejar sólo $1 a la segunda persona. Según los ecónomos, la decisión “racional” para la segunda persona debería ser la de aceptar cualquier oferta donde reciba algo de dinero, pues no importa si son $600, $400 o sólo $1; cualquier cantidad es mejor que no recibir nada.

¿Aceptarías cualquier oferta?

Sin embargo, cuando este experimento se lleva a cabo realmente entre personas la teoría es muy distinta a lo que ocurre en la práctica. ¡Por supuesto que no! ¿Me vas a dar $1 mientras tú te quedas con $999? ¡Eso no es justo! La mayoría de las personas estamos más que dispuestos a sacrificar nuestra propia ganancia, con tal de ver también perder su ganancia a aquel que percibimos está siendo injusto y aprovechándose de su situación de ventaja. Más aún, esta no es una propiedad particular de los humanos, en experimentos con monos capuchinos como participantes se observan resultados similares: una tendencia a rechazar ofertas perfectamente váldas, si es que otros están obteniendo una mejor recompensa. Tenemos aversión a la desigualdad.

Y es quizá por esto también que para todos nos parece muy natural e intuitiva la idea de compartir bienes y repartirlos equitativamente en partes iguales. A diferencia de la resta y los “números negativos” que parecían tan extraños y traídos de un mundo de fantasía; difícilmente encontramos un problema en imaginar, por ejemplo, como compartir y repartir cinco panqués recién horneados entre dos personas hambrientas. Todos notamos el pequeño problema que esto supone, las unidades de panqués no se pueden repartir en dos partes iguales, pero también todos descubrimos de inmediato la solución: ¡basta con romper uno de los panqués!

Una forma de dividir cinco panqués entre dos personas

Podríamos decir que cada una de las personas recibe dos panqués y “un medio”. Realizar operaciones básicas con estos nuevos números “quebrados”, tampoco nos supone ningún problema, ya que las mismas ideas que hemos explorado antes se aplican de manera muy natural aún cuando nuestros números tienen “pedacitos” de unidades. La suma de dos números sigue siendo la simple agrupación de las cantidades que representan a ambos; igual que hay deudas de manzanas enteras, podemos quedar en deuda con fracciones de panqués; para calcular los productos podemos seguir aplicando nuestro avanzado método de formar rectángulos con ellos; además, del mismo modo que podemos dividir panqués enteros entre nuestros amigos, podemos también dividir los pedazos en fracciones más pequeñas si nos viéramos en la necesidad.

El producto obtenido al repetir “tres veces” los “dos panqués y un medio”

Sin embargo andar sumando, restando, multiplicando y dividiendo montones de pedacitos de diferentes tamaños, pronto las operaciones se vuelven un poco engorrosas. Afortunadamente, no importa cuantas operaciones realicemos, ni cuantos pedacitos de diferentes tamaños estén involucrados, siempre vamos a poder representar un número “quebrado” usando dos números que estén completos o “enteros”. El primero de ellos indica en cuantas pedazos tienes, mientras que el segundo indica cuando pedazos necesitas para formar una unidad entera.

Los quebrados se pueden escribir más fácil usando varios pedazos del mismo tamaño

Quizá pueda sonar un poco extraño, pero incluso se pueden repartir panqués o pedazos de pizza entre “media persona”. Por ejemplo, si tenemos 5 panqués y los repartimos entre “media persona”, ¿cuántos le tocan a una persona entera? La respuesta, si se lo pueden imaginar, son 10 panqués, pues a cada una de las dos “medias personas” le tocan 5 panqués. En general, podemos obtener el número de panqués a un tercio (o un cuarto, o un quinto, o ...) de persona, simplemente multiplicando el número de personas por tres (o cuatro, o cinco, o ...).

Y, aunque a veces un poco simpático, todo parece más o menos claro e intuitivo cuando se realizan operaciones aritméticas con esta nueva clase de números; todo excepto por esa pregunta incómoda que tarde o temprano se nos atraviesa en el camino: ¿qué es lo que sucede cuando dividimos por cero?

Si tengo cinco panqués y los divido entre cero personas, ¿cuantos panqués le tocan a cada persona? Y no, la respuesta no puede ser cero: si juntas los cero panqués que le repartiste a las cero personas al final no recuperas los cinco panqués con los que empezaste. A diferencia de lo que sucede cuando repartes entre dos o más personas, si juntas de nuevo todas las fracciones repartidas, recuperas la cantidad original exacta. Algunas personas simplemente buscan evitar a toda costa enfrentarse con este problema, y muy dogmáticamente ordenan: nunca dividas entre cero, simplemente no se puede, no tiene sentido.

Al dividir entre cero, algunas computadoras simplemente detienen la ejecución del programa reconociendo que ha existido un error. Algunas regresan como resultado no un número, sino un valor curiosamente llamado “no es un número” simplemente indicando que se ha llevado a cabo una operación que no está bien definida entre la clase de números con la que se está trabajando.

Algunos, un poco más aventureros, no le huyen al problema y tratan de analizarlo más a fondo. Por ejemplo, en lo que todos están más o menos de acuerdo es que cuando divides cero entre cero, lo que obtienes es cualquier número que tu quieras. Puedes decir que cero dividido entre cero es cinco y estar en lo correcto, del mismo modo que cero entre cero es menos dos o es cuatro quintos. Y esto es porque si juntas las cinco partes (o menos dos, o el número que quieras) que le repartiste a cada una de las cero personas, al final recuperas la cantidad original que tenías: cero. Esto es un poco raro, porque hasta ahora el resultado de una operación aritmética había sido siempre un número, ¡no montones de ellos!

Sin embargo el verdadero problema ocurre cuando queremos repartir cierta cantidad (no cero) de cosas entre precisamente cero personas. Entonces el argumento que presentamos en el párrafo anterior deja de funcionar. Alternativamente, una de las respuestas que se suele dar es que al dividir entre cero lo que obtienes es un número “muy, pero muy grande”. La justificación viene del hecho que discutimos sobre lo que ocurre cuando divides entre un número más y más pequeño de personas (un medio, un tercio, un cuarto, ...) que equivale a multiplicar el número original por otro número cada vez más y más grande (por dos, por tres, por cuatro, ...). “Naturalmente”, cuando divides entre el número que tiene la magnitud más pequeña de todas, el cero, ¡debes obtener un número que tiene la magnitud más grande de todas! Sin embargo, desde que aprendimos a contar nos dimos cuenta que ninguno de los números que nos hemos encontrado hasta ahora es “más grande que todos”, y es por esto que tenemos que inventar un nuevo número: el infinito.

Mas aún, los lectores avispados notarán que un argumento similar pero con números negativos nos dirá que el resultado de dividir entre cero también debe de ser un número “muy, pero muy grande, y negativo” y es por eso que debemos introducir también el “menos infinito”. El infinito, no importa que signo tenga, es un concepto tan extraño muchos se resisten a tan sólo llamarle “número”. Y es que, de entrada, parece introducir más preguntas de las que contesta: ¿Qué es lo que sucede cuando sumas infinito más cinco? ¿Cuánto es infinito más infinito? ¿¡Cuanto es infinito multiplicado por infinito!? ¿Se obtiene a caso un infinito más grande?

Estas son montones de preguntas interesantes y que, queda prometido, vamos a abordar también más adelante en nuestra serie. Por lo pronto, sin embargo, nuestro plan continua con otras dos clases de números que nos tenemos que encontrar también: los que no son racionales (sino más bien irracionales), y los que no son reales (sino más bien imaginarios).

--

Escrito por Juan A. Navarro Pérez y publicado originalmente en Pedazos de Carbono

Los llaman cursos porque se acortan

Y aunque hoy es 1° de mayo, no se nos olvida que toca la tercera entrega de la serie acerca de los números. Ahora Juan de Pedazos de Carbono nos explica qué pasa cuando uno se queda sin manzanas para comer o cuando uno tiene ganas de bailar como Michael Jackson.

--

En los cuentos de Alicia en el país de las maravillas, hay un pasaje que siempre me ha parecido de lo más simpático. En él, Alicia acaba de conocer a la Tortuga Falsa—una especie de tortuga mezclada con partes de vaquilla, con la que se prepara la sopa de tortuga falsa—y al Grifo—una legendaria criatura con el cuerpo de león, pero la cabeza y las alas de águila. La Tortuga Falsa platicaba a Alicia de las cosas que aprendía cuando iba de pequeña en la escuela, cómo por ejemplo los diferentes ramos de la aritmética: “ambición, distracción, feificación e irrisión”.

“¿Y cuántas horas al día tenías tus cursos?” preguntó Alicia, apresurada por cambiar el tema.

“Diez horas el primer día,” contestó la Tortuga Falsa, “nueve al día siguiente, y así”.

“¡Qué plan de estudios tan curioso!” exclamó Alicia.

“Es por eso que los llaman cursos,” anotó el Grifo, “porque se acortan de día en día”.

Esta era una idea realmente nueva para Alicia, y reflexionó un momento antes de hacer su siguiente observación.

“¿Entonces el undécimo día debió ser de vacaciones?”

“Por supuesto que así lo era,” respondió la Tortuga Falsa.

“¿Y cómo se las arreglaban en el duodécimo día?” Alicia continuó entusiasmada.

“Ya es suficiente de hablar sobre cursos,” interrumpió el Grifo en un tono muy decidido, “cuéntale ahora algo sobre juegos.”

Alicia, la Tortuga Falsa y el Grifo (por o s h i)

Alicia se topó con la idea de lo que ocurre cuando tienes, digamos ahora, tres manzanas (o rocas, u horas de clase), y comienzas a sustraer una a una, por ejemplo comiéndonos una manzana al día. Y todos tenemos una idea bastante clara de lo que ocurrirá eventualmente: se agotarán todas las manzanas. Si recuerdan nuestra lección anterior donde aprendimos a representar números como colecciones de rocas, este es el número de manzanas que tendrás ese día:

El número de manzanas que tendrás el cuarto día

Ok, esto es ya un poco extraño pero, y luego, ¿qué ocurrirá el dia siguiente? ¿cuantas manzanas tendrás después de comerte otra manzana? “¿Cómo que comerme otra manzana? ¿Cuál manzana! ¡Eso es absurdo! ¡Ya no hay manzanas que comer!” Ahora entiendes por qué muy decidido el Grifo se apresuró a cambiar el tema de conversación.

Y si esto te recuerda a algunos de los primeros dolores de cabeza que sufriste en la primaria: no te preocupes, no estás sólo. Aunque para todos es más o menos claro lo que significa no tener ninguna manzana—los Babilonios hace cuatro mil años, por ejemplo, dejaban espacios vacíos para indicar la ausencia de cantidades—la idea de que esa “nada” o “falta de cosas” pueda ser tratada también como un “número” no fue muy bien entendida sino hasta unos mil años después por comerciantes en la India. Fueron ellos también quienes descubrieron, unos doscientos o trescientos años más tarde, que de hecho sí que te puedes comer una manzana aún cuando ya no tienes ninguna en la alacena.

Y no es ninguna coincidencia que hayan sido precisamente comerciantes quienes por primera vez hayan comprendido el uso de estos nuevos y extraños conceptos; pues fueron ellos también los inventores de otra gran idea que parece ser fundamental en la economía de nuestras sociedades modernas: la deuda.

¿Tienes mucha hambre y ninguna manzana para comer? ¡Eso no es ningún problema! Pide a un comerciante que te de una de fiado y luego se la pagas. Las manzanas fiadas, por supuesto, no son de gratis, y por eso el comerciante mantendrá la cuenta de las manzanas que tú le debes a él. Esto es lo que pasaría, entonces, si cada día te sigues comiendo una manzana:

No hay razón para dejar de comer manzanas, ¡incluso después de que estas se te acaban!

Como te lo podrías imaginar, no hay ningún problema con tener y deber cosas al mismo tiempo; de hecho notaras que siempre puedes emparejar e ir cancelando elementos que “tienes” con elementos que “debes” sin cambiar la cantidad total de tus pertenencias. Ahora el concepto del número “vacío”—o “cero” como comúnmente le llamamos—deja de perder su misterio: es el número que obtienes cuando lo que tienes es igual a lo que debes y, por lo tanto, al emparejar los elementos uno a uno se cancelan completamente los “deberes” con los “teneres”.

Diferentes formas de representar al número “cero”.

Además, sumar estos números “comerciantes” es la cosa más sencilla del mundo: simplemente sumas tus “deberes” y tus “teneres” de manera independiente; si te lo place al final puedes también simplificar algunos deberes con teneres pero, por supuesto, esto no es necesario.

La adición de dos números “comerciantes”

Notarás que cada número tiene a su “alter ego”, que es lo que obtienes cuando intercambias el número de lo que debes con el número de lo que tienes. Observarás también que cuando sumas a un número con su propio “gemelo opuesto”, estos se cancelan, produciendo ese número que es ahora ya un muy buen conocido nuestro:

Al sumar un número con su “inverso negativo” da cero

Otro hecho bien conocido es que si simplificas un número lo más que se pueda, cancelando los teneres con los deberes, al final siempre te encontrarás con uno de tres posibles casos: todas las deudas se cancelan, pero no lo que tienes, y terminas con un resultado “positivo”; tienes el balance perfecto y obtienes el número cero; o todo lo que tienes se cancela pero no así tu deuda, terminando con un resultado “negativo” y quizá una preocupación por lo que te falta todavía que pagar.

Pero no todo sobre los números negativos tiene que ser tan, uhm, ¡negativo! El “signo” de los números puede usarse también para indicar la dirección en la que se mueven las cosas. Y la dirección es algo que tienes que tener muy pero muy claro si, por ejemplo, quieres aprender a bailar como Michael Jackson.

Imagina, por ejemplo, que te encuentras de pie justo en el centro del escenario. Empezando con la secuencia más sencilla, si das dos pasos mirando a la parte derecha del escenario al final te vas a encontrar, uhm ... pues ... ¡dos pasos a la derecha del escenario! ¡Esto es muy sencillo!

2 × 1 = 2

Pero también podrías dar “menos dos” pasos o, dicho de otro modo, dos pasos en la dirección opuesta, mirando hacia la parte izquierda del escenario. Al final de esta secuencia estarás ahora dos pasos a la izquierda del escenario.

–2 × 1 = –2

Sin embargo lo que todos estamos ansiosos por aprender es, por supuesto, ¡a hacer el moonwalk! De este modo podemos dar dos “pasos negativos” pero mirando en la dirección positiva, a la derecha, y—curiosamente—acabaríamos en el mismo lugar en el que acabamos cuando hicimos “menos dos” de los pasos normales.

2 × –1 = –2

Y si has puesto atención a nuestra lección de baile, finalmente entenderás por qué en la primaria te machacaron esa idea en la mente de que “negativo” por “negativo” da “positivo”. Pues lo único que tienes que hacer es dar “menos dos” (mirando a la izquierda) “pasos negativos” (estilo moonwalk) para darte cuenta que daría exactamente lo mismo que dar dos pasos normales a la derecha.

–2 × –1 = 2

Bueno, daría casi lo mismo porque, por supuesto, nada puede prender más a tus fans que ¡verte en el escenario dando menos dos pasos negativos!

--

Escrito por Juan A. Navarro Pérez y publicado originalmente en Pedazos de Carbono