memoria

¿Qué pasó ayer? Los estragos negativos de beber alcohol en la adolescencia

alcoholNadie tiene alguna anécdota inolvidable de la adolescencia que haya comenzado comiendo una ensalada. Pero ¡cuántas historias de alcohol y borracheras! Los “no me acuerdo de nada” van más allá de la cruda moral que da el día siguiente al atracón de las bebidas alcohólicas. De hecho, beber en la adolescencia puede llevar a presentar cambios en la estructura del cerebro y un déficit de memoria que persiste en la edad adulta.

Algunos científicos tenían la idea de que estos cambios estaban relacionados con la pérdida de mielina, una capa que recubre los axones de las neuronas y que facilita la transmisión eficiente de impulsos nerviosos. Sin embargo, no se tenía claro si el consumo constante y abundante de alcohol era la causa.

Ahora, un grupo de investigadores de diferentes instituciones estadounidenses estudió el área prefrontal de la corteza cerebral de ratas, zona relacionada con el razonamiento y la toma de decisiones. Mientras que a un grupo de estos animales se les dio alcohol, otros consumieron agua azucarada.

Los resultados mostraron que aquellas ratas que consumieron alcohol cuando fueron jóvenes, presentaron reducción en los niveles de la mielina de sus cerebros al momento de alcanzar la adultez. Además, aquellas ratas que bebieron grandes cantidades de alcohol, obtuvieron los peores resultados en tareas de memoria.

Los autores del estudio mencionan que este trabajo muestra los efectos negativos en el cerebro por la ingesta del alcohol en la adolescencia, particularmente durante el desarrollo de éste, así como de las consecuencias a largo plazo.

Fuentes:

Artículo original | Nota de Science daily |  Nota original en el Blog de Historias Cienciacionales | [Imagen tomada de este sitio ]

Eterno resplandor de una rata sin recuerdos.

Imagen de uno de los carteles de la película. Si no la han visto, ¡háganlo!. El dolor de un recuerdo que algún momento fue grato. La ruptura amorosa. La sensación de angustia disparada por las memorias fue lo que llevó a Clementine a solicitar los servicios de la empresa Lacuna para borrar a su ex novio, Joel, de su memoria en la película Eterno resplandor de una mente sin recuerdos (Michel Gondry, 2004). ¿Seremos pocos quienes deseamos que este servicio esté disponible?

Recientemente, científicos de diversas instituciones en San Diego, California, se han hecho de esta una realidad más cercana. Durante muchos años se supo que los recuerdos y su almacenamiento dependen de dos procesos neuronales: la potenciación a largo plazo, que fortalece el recuerdo, y la depresión a largo plazo, que lo debilita. Gracias a una técnica relativamente nueva, Roberto Malinow y su equipo pudieron ver estos dos procesos en acción. Y no sólo eso: también los simularon en el cerebro de ratas, borrando un recuerdo específico para después restaurarlo.

Para lograrlo, se les ocurrió utilizar ratas e insertarles en algunas neuronas el gen de un alga. Este gen se activa con la luz: las neuronas que lo tenían, al ser estimuladas con un pequeño rayo dirigido, producían cierta reacción fácilmente detectable. Esta técnica de inserción de genes sensibles a la luz es la optogenética, y una de sus grandes ventajas es que el rayo de luz puede dirigirse con mucha precisión a células específicas.

El segundo paso fue condicionar la conducta de las ratas. Un típico condicionamiento conductual consiste en aplicar a los animales un estímulo –como una descarga eléctrica en las patas– al mismo tiempo que escuchan cierto sonido. Después de varias repeticiones, los animales asocian el sonido a la descarga, y cada vez que escuchan el sonido sienten miedo, a pesar de ya no recibir el estímulo. En este experimento condicionaron así a las ratas; en vez de usar un sonido, dirigieron un rayo de luz hacia sus neuronas. De esta forma, las ratas y sus neuronas sentían miedo cada vez que pasaba el rayo de luz por su cerebro. El miedo es la respuesta o memoria que los científicos estaban investigando, pues es el recuerdo de que algo doloroso va a ocurrir, aunque al final no ocurra.

Con esto comprobaron que las neuronas pasaban por un estado de potenciación a largo plazo –con el cual fortalecían su recuerdo de miedo– y que este proceso interviene en la formación de la memoria. Pudieron verlo al hacer un escáner del cerebro de las ratas en el momento preciso en que se formaba la memoria.

Una pregunta natural brotó más tarde: si efectivamente la potenciación es lo que forma los recuerdos, ¿entonces el proceso contrario, la depresión a largo plazo, podrá borrarlos? Al manipular diferentes frecuencias del rayo de luz dirigido hacia las neuronas del recuerdo, los investigadores lograron debilitarlas y simular el proceso de depresión a largo plazo. Las ratas, después de esto, no volvieron a mostrarse asustadas ante el estímulo al cual estaban condicionadas. Es decir, habían perdido esa memoria. Finalmente, y como si bastara con mover un switch de prendido y apagado, simularon la potenciación a largo plazo y restauraron de nueva cuenta el recuerdo en las ratas.

Aún no es posible que todo corazón roto acceda a los servicios de Lacuna, pero esta investigación, sin duda, y para suerte de muchos, es un gran primer paso.

______________________

[Imagen de uno de los carteles de la película. Si no la han visto, ¡háganlo!].

Artículo original en Nature | Nota Original en el Blog de  de Historias Cienciacionales

 

 

De matemáticas, sueños y sucesos que nunca olvidarás

mat  

Aquellos que han sido mordidos por un perro saben bien cómo se siente el miedo. Recuerdan al animal, dónde estaban cuando se les lanzó, cómo fue la mordida, el momento cuando llegaron con el médico, y mucho más. Cuando experimentamos eventos que nos dejan marcados podemos recordar los detalles gracias a un número de proteínas que son generadas en nuestras neuronas para fabricar memorias. Algunas de estas proteínas persisten por algunas horas en lugares específicos de nuestro cerebro antes de desintegrarse.

Algo que estaba claro cuando se estudiaba con modelos matemáticos el almacenamiento de memorias era por qué sólo nos acordamos de detalles específicos y no de todo lo que sucede durante el evento traumático.

Un nuevo modelo desarrollado por investigadores del Instituto Salk de estudios biológicos, en Estados Unidos, une los descubrimientos que se han hecho en la biología molecular y en los sistemas del almacenamiento de memorias para describir cómo funciona el registro de información en nuestra memoria durante eventos significativos.

Utilizando modelos computacionales, los investigadores mostraron que, aun cuando las proteínas se almacenan en algunas neuronas de un circuito dado, los recuerdos son retenidos cuando eventos subsecuentes activan las mismas neuronas del evento original. O sea, cuando te encuentras a un perro muy parecido al que te mordió o en una situación similar.

Además, una cosa es lo que sucede a nivel neuronal y otra lo que ocurre a nivel cerebral. La posición espacial de las proteínas en neuronas y zonas determinadas del cerebro predice qué recuerdos serán almacenados. Este patrón espacial predice de manera exitosa cómo la retención de recuerdos se puede explicar con funciones matemáticas, a través de una superposición de tiempo y espacio.

Dicho trabajo también provee un marco teórico potencial para entender cómo las generalizaciones de memorias son procesadas durante los sueños. Los investigadores sugieren que los recuerdos importantes del día son, por lo general, movidos a través del cerebro desde un almacenamiento temporal en el hipocampo a uno de larga memoria en la corteza cuando dormimos.

Poco se sabe si el almacenamiento de recuerdos o la consolidación se hace durante los sueños. A partir de este modelo, los investigadores se sienten confiados para afirmar que durante el sueño reorganizamos nuestra memoria, en tanto que reforzamos algunos recuerdos y perdemos otros que no necesitamos.

 

Bibliografía:

Nota fuente en Eurekalert |Artículo original  en Cell| Nota en el Blog de Historias Cienciacionales

El olvido te sienta bien

  olvido

Benjamin Franklin, uno de los fundadores de Estados Unidos, pedía que se le enseñara para así poder recordar. Si sólo le decían las cosas, las olvidaba. Lo que este hombre del siglo XVIII no sabía es que eliminar información innecesaria de nuestro cerebro es un evento que facilita mantener la plasticidad en este órgano y evitar el desarrollo de desórdenes mentales. ¿Será que las proteínas dentro de nuestras neuronas tienen algo que ver con nuestra memoria y olvido?

Franklin pidió que en su epitafio se leyera que ya "era comida de gusanos". Quienes conformamos Historias Cienciacionales no sabemos qué especie es la que se sirvió un buen banquete de los restos de este ilustre estadounidense. Pero si se trataba de una especie que ha servido de conejillo de indias para muchos experimentos, la de Caenorhabditis elegans, y le cambiamos algunos genes, podremos responder nuestra pregunta.

A estos gusanos les quitaremos la proteína musashi. Esta molécula es responsable para la función de las conexiones entre neuronas del cerebro. También evita que se produzcan otras proteínas que favorecen que la comunicación se estabilice, fenómeno importante en el proceso de aprendizaje y olvido.

En un primer experimento, veremos que nuestro grupo de gusanos modificados genéticamente tendrán las mismas habilidades aprendidas que aquellos intactos. Sin embargo, con el tiempo, los mutantes serán capaces de recordar información mejor que el otro grupo. Esto significa que sin esta proteína, se es menos olvidadizo. Además, aquellos gusanos que sí la tienen presente, perderán la memoria con más facilidad. Estos resultados son un argumento más para mostrar cómo la memoria y el olvido no son eventos secundarios, sino que hay causas directas –en este caso, moleculares– que los desencadenan.

Con trabajos como estos, se echa luz sobre los mecanismos moleculares que existen en el cerebro para poder olvidar. Así, se facilita el conocer las causas de desórdenes mentales involucrados con la memoria o la falta de ésta. Aún queda un largo camino para poder llegar a conclusiones más generales y para estar más cerca de medicamentos que prevengan la descontrolada pérdida de memoria.

Lamentablemente, no tenemos la posibilidad de decirle al señor Franklin sobre los avances en esta materia para que pueda olvidarlos. Al menos, nos quedamos tranquilos porque el proceso de aprendizaje en este tema continúa. Y, como también decía el hombre que tuvo problemas de sobrepeso, involucrarnos en este tema –y en todos– es la única manera para aprender.

Bibliografía:

Artículo original en Cell |Nota fuente en Science Daily| Nota en el blog de Historias Cienciacionales

Y a ti, ¿te entra por una y te sale por la otra?

earTípico. En tu casa te piden una serie de encargos para hacer durante el día, pero al poner pie en la calle ya no recuerdas cuáles eran. Los humanos no somos tan buenos para recordar cosas que escuchamos como cuando las vemos o tocamos. ¿O qué tan bien recuerdas el color del pantalón de la persona que te gusta la última vez que la viste? Y qué decir de la textura de tus sábanas cuando las sientes enredadas en tus pies por las mañanas.

La comunidad científica creía que las partes de nuestro cerebro responsables de la memoria estaban integradas por las conexiones neuronales. Una nueva propuesta señala que el cerebro humano utiliza diferentes rutas para procesar la información sensorial. Más aún, nuestro órgano nervioso interpreta de forma distinta las señales auditivas de las visuales y las táctiles.

La propuesta se basa en la experimentación con cien estudiantes de la Universidad de Iowa, Estados Unidos. Para probar su memoria a corto plazo, se les pidió que escucharan tonos a través de audífonos, que vieran sombras de cuadrados rojos y sintieran vibraciones de baja intensidad al tomar una barra de aluminio. Cada estímulo fue separado por un espacio de 32 segundos. Los resultados muestran que el desempeño en memorizar fue peor para los sonidos, incluso cuando se hizo un segundo experimento con estímulos comunes.

Esto es tranquilizador. Explica por qué nos cuesta tanto trabajo recordar lo que nos enseñan en una clase si sólo lo escuchamos. Parece ser que necesitamos estímulos visuales o táctiles para que nuestro aprendizaje sea memorable y significativo.

A partir de dicho estudio también se concluyó que nuestra habilidad para recordar lo que tocamos es casi igual a nuestra habilidad para recordar lo que vemos.

¿Un consejo para mejorar la memoria auditiva? Utilizar estrategias alternativas, como repetir las cosas que se escuchan.

Bibliografía:

Artículo original | Nota Fuente | Nota original en el Blog de Historias Cienciacionales | Imagen

Recuerdo falso, recuerdo genuino

tonegawa Investigadores del MIT han implantado un recuerdo falso en el cerebro de un ratón, que se comporta a todas luces como un recuerdo genuino.

Tu abuelita ha contado tantas veces esa historia vergonzosa de tu infancia que, a pesar de que no tenías la edad suficiente para grabarla en la memoria, cada vez la recuerdas con mas detalles, hasta el punto de que te convences de que es un recuerdo genuino tuyo, y no uno que tu abuelita te plantó después de años de contártelo.

¿Te suena?

La memoria puede engañarnos, haciéndonos creer que recordamos cosas que no vivimos o haciéndonos olvidar experiencias reales. El modo en que los recuerdos se forman en el cerebro es un intenso campo de estudio de la neurobiología, pues aún no se tienen claros todos los mecanismos o principios que sigue la formación y almacenamiento de los recuerdos. Una de las ideas predominantes es que los recuerdos se almacenan en forma de grupos de neuronas interconectadas, estructura conceptualmente conocida como engrama. Este engrama podría estar disperso por el cerebro o en algún punto focalizado. Con los avances técnicos de la neurobiología, estas preguntas ahora se pueden abordar en el laboratorio.

Un grupo de investigadores del MIT (Instituto Tecnologico de Massachusetts), coordinado por Susumu Tonegawa, ha conseguido implantar en ratones un recuerdo falso valiéndose de una tecnología que activa un engrama en particular. La tecnología que hace posible esa activación se llama optogenética y consiste en modificar genéticamente las neuronas del cerebro de los ratones para que expresen una proteina llamada canalrodopsina, la cual es sensible a la luz y activa a las neuronas segun los estímulos de luz que recibe. Los investigadores diseñaron un sistema en el que las neuronas sólo producen la canalrodopsina cuando se activan genes relacionados con la formación de recuerdos. Así, cada vez que se formara un recuerdo, las neuronas involucradas en él expresarían la canalrodopsina y quedarian “etiquetadas" con ella. Para volver a activarlas, los investigadores solo tendrían que estimularlas con luz.

En un estudio publicado el año pasado, este grupo de investigadores probó que su tecnología funcionaba al mostrar que se podía hacer evocar un recuerdo en ratones en cualquier momento deseado. Luego de entrenar a los ratones para que le tuvieran miedo a una sala en particular (por haber recibido en ella ligeros choques eléctricos), las neuronas involucradas en ese recuerdo de miedo quedaban etiquetadas con la canalrodopsina. Los ratones recordaban algo así como “no quiero entrar en esta sala porque aquí me dan toques". Días después, los investigadores metían a los ratones a una sala nueva y los estos se comportaban normalmente ("esta sala no me trae ningun recuerdo en particular"). Pero cuando los investigadores activaban con luz las neuronas del recuerdo anterior, los ratones enseguida se paralizaban de miedo ("no quiero entrar en esta sala porque me dan toques"), a pesar de que nunca les habian dado choques electricos en ella. Este estudio probó que el recuerdo de “no quiero estar en esta sala" estaba almacenado en un grupo determinado de neuronas, aquellas que fueron etiquetadas con la canalrodopsina en la primera sala.

En un estudio publicado hoy en la revista Science, el equipo de Tonegawa fue un paso más allá e implantó en los ratones un recuerdo falso valiéndose de la misma tecnología. Primero, pusieron en una sala a los ratones y los dejaron estar sin darles ningún choque eléctrico. Conforme esta sala se almacenaba en la memoria de los ratones, sus neuronas se iban etiquetando con la canalrodopsina ("en esta sala se está bien"). Al día siguiente, pasaban a los ratones a una sala distinta. En ella, los investigadores les daban choques eléctricos ligeros, generando un recuerdo de miedo ("no quiero estar en esta sala"), y al mismo tempo activaron las neuronas del recuerdo del dia anterior ("una sala en la que se está bien"). Al tercer día, ponían a los ratones en la primera sala y observaban que los roedores se paralizaban de miedo, como si estuvieran en un lugar donde les hubieran dado choques. Los ratones recordaban “no quiero estar en esta sala, donde antes se estaba bien, porque en ella me dieron toques", a pesar de que realmente nunca les dieron choques en ella. Para los investigadores resultó interesante que el recuerdo falso no substituía por completo al genuino: los ratones con el recuerdo falso todavia le temían a la segunda sala, pero no tanto como otros ratones a los que tambien les dieron choques en la segunda sala pero no les plantaron recuerdos falsos.

El equipo de Tonegawa también reporta en este estudio reciente que la actividad neuronal que este recuerdo falso impulsa es idéntica a la que impulsaría un recuerdo genuino. Para ellos, este tipo de investigaciones son una forma novedosa de estudiar el cerebro. “Comparado con los estudios que tratan al cerebro como una caja negra y tratan de acceder a él de afuera hacia adentro, nosotros estamos tratando de estudiarlo de adentro hacia afuera," dice Xu Liu, uno de los autores del estudio recién publicado. “Ahora que podemos reactivar y cambiar los contenidos de los recuerdos en el cerebro, podemos comenzar a hacer preguntas que antes sólo estaban en el reino de la filosofía," comenta Steve Ramirez, otro de los autores del articulo. “Hay preguntas que alguna vez parecían de ciencia ficción que ahora podemos abordar experimentalmente en el laboratorio," añade.

Tal vez estemos acercándonos a un tiempo en el que las abuelitas no tengan que contarnos una historia miles de veces para convencernos de haberla vivido; ahora podrán usar la canalrodopsina para juguetear con nuestras mentes.

Nota fuente en web del MIT | Aqui  articulo original en la revista academica Science 

¿Una pastilla para potenciar la memoria?

Neurocientíficos del Baylor College of Medicine en Houston, Texas publicaron hace unos días en la revista Cell un descubrimiento que abre nuevas avenidas en el campo de la neuropotenciación cognitiva y aporta interesantes evidencias sobre cómo pequeños cambios en unos cuantos genes pueden representar ganancias muy considerables en términos de capacidades cognitivas. Los investigadores del Baylor buscaban caracterizar la función de la proteína PKR en el cerebro. Para ello, se valieron de ratones knockout (ratones modificados a través de ingeniería genética en el que uno —o varios— de sus genes son inactivados). Previamente, varios investigadores habían reportado la activación de PKR en respuesta a varios tipos de estrés celular. Por ejemplo, en infecciones virales, epilepsia y varias enfermedades neurológicas, como las de Parkinson y Huntington. Sin embargo, la función precisa de la proteína era desconocida.

Los ratones con el gen PKR noqueado (PKR -/-), son a simple vista iguales que los ratones normales. Sin embargo, cuando los investigadores los sometieron a un electroencefalograma, detectaron una actividad neuronal atípicamente elevada.

Existen dos tipos de sinapsis en el cerebro: excitatorias e inhibitorias. Se cree que es necesario un equilibrio entre ambas para mantener una función cerebral adecuada. Desequilibrios en éste balance de tipos sinápticos se han observado en pacientes con autismo y esquizofrenia. En el caso de los ratones PKR -/-, éstos mostraban un incremento en excitabilidad relativa, debido a una reducción en la transmisión sináptica inhibitoria.

Los investigadores también aplicaron varias pruebas conductuales a los ratones para medir su memoria y capacidades cognitivas. Para su sorpresa, descubrieron que los ratones knockout poseían una super memoria. El más claro ejemplo es el caso de la prueba del laberinto acuático de Morris, usada comunmente para medir la memoria visuo-espacial. En ésta, los ratones deben nadar en una pequeña piscina circular y encontrar una plataforma escondida, ayudándose de pistas visuales para recordar su ubicación (ver diagrama a la derecha). Los ratones normales necesitan hacer la prueba varias veces durante varios días para poder memorizar la ubicación de la plataforma. Los ratones sin PKR son capaces de memorizar el camino después de hacer la prueba una sola vez.

Para asegurarse de que la memoria aumentada no era resultado de cambios al proceso de desarrollo (por ejemplo, desarrollo embrionario) del ratón, los investigadores inyectaron una molécula inhibidora de PKR en el cerebro de ratones normales adultos, y observaron el mismo efecto. Además, mediante varios experimentos moleculares, demostraron que esta mejoría en la memoria es inducida por un gen llamado IFNG (interferón gamma), el cual incrementa su expresión en la ausencia de PKR. La inhibición de IFNG con RNA de interferencia en los ratones knockout, devolvió la actividad neuronal a un nivel similar al de los ratones normales, sin efectos adversos visibles. Esto demuestra que la manipulación genética no es necesaria para aumentar la memoria, y sugiere que, posiblemente, el uso de moléculas que selectivamente bloqueen PKR en humanos, podría también mejorar la memoria. Sin embargo, aún queda un largo camino por recorrer.

Hace apenas unas semanas, investigadores canadienses y chinos reportaron en un artículo en PLoS Genetics que habían identificado más de 60 genes únicos del linaje humano. Presumiblemente, éstos genes pues no están presentes en ninguna otra especie, ya surgieron a partir de mutaciones espontáneas en nuestros ancestros y que convirtieron regiones de DNA no funcionales del genoma en regiones funcionales (genes que se expresan y producen proteínas). Particularmente interesante resulta el hecho de que estos genes pequeños sean expresados preferentemente en dos tipos de tejido: la corteza cerebral y los testículos. En la corteza cerebral, por que apoya la teoría de que las capacidades cognitivas humanas son presumiblemente "superiores" a las de otros primates debido a diferencias genéticas; y en los testículos por que varias teorías han señalado que la meiosis que tiene lugar allí, sería responsable de generar diversidad genética dentro de la especie.

Ambos estudios tienen algo en común. Aportan evidencia de que unas pocas mutaciones en unas pocas zonas del genoma son suficientes para generar cambios substanciales en la función del cerebro, y por lo tanto conferir una ventaja cognitiva (por ejemplo, una "super memoria") a los portadores de tales mutaciones o variantes genéticas. Conforme más genes y sus interacciones se vayan identificando, el día en que una pastilla que nos permita potenciar nuestra memoria y capacidades de aprendizaje (y contender con diversas enfermedades neurodegenerativas) se vuelva comercialmente viable, se volverá más y más una realidad.

Acerca del Autor: Miguel E. Rentería es egresado de la UNAM y actualmente estudia un doctorado en genética y neurociencias en la Universidad de Queensland, Australia. Twitter: @mkrente Click aquí para ver otros textos del autor.

Referencias: Zhu, et al. Suppression of PKR Promotes Network Excitability and Enhanced Cognition by Interferon-γ-Mediated Disinhibition, Cell, Volume 147, Issue 6, 9 December 2011, Pages 1384-1396, ISSN 0092-8674, 10.1016/j.cell.2011.11.029. Wu, et al. (2011) De Novo Origin of Human Protein-Coding Genes. PLoS Genet 7(11): e1002379. doi:10.1371/journal.pgen.1002379